
Lecture 18: Clustering

Applied Machine Learning
Volodymyr Kuleshov
Cornell Tech

Part 1: Gaussian Mixture Models
Clustering is a common unsupervised learning problem with numerous applications.

We will start by defining the problem and outlining some models for this problem.

Review: Unsupervised Learning
We will assume that the dataset is sampled from a probability distribution , which we
will call the data distribution. We will denote this as

The dataset consists of independent and identicaly
distributed (IID) samples from .

!data

" ∼ .!data

 = { ∣ # = 1, 2, . . . , $}"(#)

!data

Clustering
Clustering is the problem of identifying distinct components in the data distribution.

A cluster is associated with a subset of the coming from .
Datapoints in a cluster are more similar to each other than to other clusters
Clusters are usually defined by their centers, and potentially by other shape
parameters.

⊆ %& " !data

Review: -Means
-Means is the simplest example of a clustering algorithm.

The algorithm seeks to find hidden clusters in the data.
Each cluster is characterized by its centroid (its mean).
The clusters reveal interesting structure in the data.

$$
'

'

We seek centroids such that the distance between the points and their closest centroid
is minimized:

where denotes the centroid for cluster .

(&

)(*) = || − centroid(())||,∑
#=1

$
"(#) +* "(#)

centroid(&) = (& &

This is best illustrated visually (from
):

Wikipedia
(https://commons.wikimedia.org/wiki/File:K-means_convergence.gif)

https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

-Means has a number of limitations:

Clustering can get stuck in local minima
Measuring clustering quality is hard and relies on heuristics
Cluster assignment is binary and doesn't estimate confidence

'

Gaussian Mixture Models
Gaussian mixtures are latent-variable probabilistic models that are useful for clustering.
They define a model

 is discrete and follows a categorical distribution
.

 is continuous; conditioned on , it follows a Normal distribution
.

The parameters are the for all .

(", ,) = ("|,) (,)!* !* !*

, ∈ {1, 2, … , '}
(, = &) =!* -&

" ∈ ℝ , = &
("|, = &) =  (,)!* .& Σ&

* , ,.& Σ& -& & = 1, 2, … , '

Gaussian Mixtures for Clustering
Gaussian mixtures define a model

This model postulates that our observed data is comprised of clusters with
proportions specified by
The points within each cluster follow a Normal distribution
To generate a new data point, we sample a cluster from and then
sample from its Gaussian

(", ,) = ("|,) (,)!* !* !*

'
, , … ,-1 -2 -'

, = & (,)!* "
("|, = &)!*

This is best understood via a picture.

Mixtures of Gaussians fit more complex distributions than one Gaussian.

Raw data Single Gaussian Mixture of Gaussians

Recovering Clusters from GMMs
Given a trained model , we can look at the posterior probability

of a point belonging to class .

(", ,) = ("|,) (,)!* !* !*

(, = & ∣ ") = =!*
(, = &, ")!*

(")!*

("|, = &) (, = &)!* !*

("|, = /) (, = /)∑'
/=1 !* !*

" &

The posterior distribution defines a "soft" assignment of to each class.
This is in contrast to the hard assignments form -Means.

"
'

Learning GMMs
Gaussian mixtures are latent variable models, and we can learn them using maximum
marginal log-likelihood:

log (") = log((", ,))max
* ∑

"∈

!* max
* ∑

"∈
∑
,∈

!*

Unlike in GMMs for supervised learning, cluster assignments are latent.
Hence, there is no closed form solution for .
We will soon see specialized algorithms for this task.

*

Optimizing the likelihood of latent variable models is hard.

A Gaussian has a single maximum, but a mixture has many and its objective is non-convex
(hard to optimize).

Beyond Gaussian Mixtures
We will focus on Gaussian mixture models in this lecture, but there exist many other kinds
of clustering:

Hierarchical clusters
Points belonging to multiple clusters (e.g. topics)
Clusters in graphs

See the scikit-learn

for more!

guide (https://scikit-learn.org/stable/modules/clustering.html)

https://scikit-learn.org/stable/modules/clustering.html

Part 2: Expectation Maximization
We will now describe expecation maximization (EM), an algorithm that can be used to fit
Gaussian mixture models.

Review: Unsupervised Learning
We will assume that the dataset is sampled from a probability distribution , which we
will call the data distribution. We will denote this as

The dataset consists of independent and identicaly
distributed (IID) samples from .

!data

" ∼ .!data

 = { ∣ # = 1, 2, . . . , $}"(#)

!data

Review: Gaussian Mixture Models
Gaussian mixtures are latent-variable probabilistic models that are useful for clustering.
They define a model

 is discrete and follows a categorical distribution
.

 is continuous; conditioned on , it follows a Normal distribution
.

The parameters are the for all .

(", ,) = ("|,) (,)!* !* !*

, ∈ {1, 2, … , '}
(, = &) =!* -&

" ∈ ℝ , = &
("|, = &) =  (,)!* .& Σ&

* , ,.& Σ& -& & = 1, 2, … , '

Review: Learning GMMs
Gaussian mixtures are latent variable models, and we can learn them using maximum
marginal log-likelihood:

log (") = log((", ,))max
* ∑

"∈

!* max
* ∑

"∈
∑
,∈

!*

Unlike in GMMs for supervised learning, cluster assignments are latent.
Hence, there is not a closed form solution for .
We will see specialized algorithm for this task.

*

Expectation Maximization: Intuition
Expecation maximization (EM) is an algorithm for maximizing marginal log-likelihood

that can also be used to learn Gaussian mixtures.

log((, ,))max
* ∑

∈"(#)
∑
,∈

!* "(#)

We want to optimize the marginal log-likelihood

If we know the true for each , we maximize

and it's easy to find the best (use solution for supervised learning).
If we know , we can estimate the cluster assignments for each by computing

.

log((, ,)).max
* ∑

∈"(#)
∑
,∈

!* "(#)

,(#) "(#)

log((,)).max
* ∑

, ∈"(#) ,(#)

!* "(#) ,(#)

*
* ,(#) #

(,|)!* "(#)

Expectation maximization alternates between these two steps.

1. (E-Step) Given an estimate of the weights, compute . and use it to
“hallucinate” expected cluster assignments .

2. (M-Step) Find a new that maximizes the marginal log-likelihood by optimizing
 given the from step 1.

This process increases the marginal likelihood at each step and eventually converges.

0 (,|)! "(#)

,(#)

*0+1
(,)!* "(#) ,(#) ,(#)

Expectation Maximization: Definition
Formally, EM learns the parameters of a latent-variable model over a dataset

 as follows.

For , repeat until convergence:

1. (E-Step) For each compute
2. (M-Step) Compute new weights as

Since assignments are "soft", M-step involves an expectation.

* (", ,)!*
 = { ∣ # = 1, 2, . . . , $}"(#)

0 = 0, 1, 2, …

∈ "(#) (,|)!*0 "(#)

*0+1

*0+1 = arg log (,)max
* ∑

#=1

$
* ∼ (,|),(#) !*0 "(#) !* "(#) ,(#)

(,|)!*0 "(#)

Understanding the E-Step
Intuitively, we hallucinate in the E-Step.

In practice, the define "soft" assignments, and we compute a vector of class

probabilities for each . <!-- * The define "soft" assignments, and we

compute a vector of class probabilities for each .

We compute an expected values over instead of hallucinating one value. -->

,(#)

(,|)!*0 "(#)

"(#) (,|)!*0 "(#)

"(#)

,(#)

Understanding the M-Step
Since class assignments from E-step are probabilistic, we maximize an expectation:

For many interesting models, this is tractable.

*0+1 = arg log (,)max
* ∑

#=1

$
* ∼ (,|),(#) !*0 "(#) !* "(#) ,(#)

= arg (, = &|) log (, , = &)max
* ∑

#=1

$

∑
&=1

'
!*0 "(#) !* "(#)

Pros and Cons of EM
EM is a very important optimization algorithm in machine learning.

It is easy to implement and is guaranteed to converge.
It works in a lot of imporant ML models.

Its limitations include:

It can get stuck in local optima.
We may not be able to compute in every model.(,|)!*0 "(#)

Part 3: Expectation Maximization in Gaussian Mixture
Models
Next, let's work through how Expectation Maximization works in Gaussian Mixture
Models.

Review: Gaussian Mixture Models
Gaussian mixtures are latent-variable probabilistic models that are useful for clustering.
They define a model

 is discrete and follows a categorical distribution
.

 is continuous; conditioned on , it follows a Normal distribution
.

The parameters are the for all .

(", ,) = ("|,) (,)!* !* !*

, ∈ {1, 2, … , '}
(, = &) =!* -&

" ∈ ℝ , = &
("|, = &) =  (,)!* .& Σ&

* , ,.& Σ& -& & = 1, 2, … , '

Review: Expectation Maximization
Formally, EM learns the parameters of a latent-variable model over a dataset

 as follows.

For , repeat until convergence:

1. (E-Step) For each compute
2. (M-Step) Compute new weights as

Since assignments are "soft", M-step involves an expectation.

* (", ,)!*
 = { ∣ # = 1, 2, . . . , $}"(#)

0 = 0, 1, 2, …

∈ "(#) (,|)!*0 "(#)

*0+1

*0+1 = arg log (,)max
* ∑

#=1

$
* ∼ (,|),(#) !*0 "(#) !* "(#) ,(#)

(,|)!*0 "(#)

Deriving the E-Step
In the E-step, we compute the posterior for each data point as follows

 defines a vector of probabilities that originates from component given the
current set of parameters

"
(, = & ∣ ") = =!*

(, = &, ")!*

(")!*

("|, = &) (, = &)!* !*

("|, = /) (, = /)∑'
/=1 !* !*

(, ∣ ")!* " &
*

Deriving the M-Step
At the M-step, we optimize the expected log-likelihood of our model.

As in supervised learning, we can optimize the two terms above separately.

log (", ,) =max
* ∑

"∈1
*,∼ (,|")!*0

!*

((|") log ("|) + (|") log ())max
* ∑

&=1

'

∑
"∈1

!*0 ,& !* ,& ∑
&=1

'

∑
"∈1

!*0 ,& !* ,&

We will start with . We have to find that optimize

Note that this corresponds to fitting a Gaussian to a dataset whose elements each
have a weight .

(" ∣ , = &) =  ("; ,)!* .& Σ& ,.& Σ&
! (, = &|) log (|, = &)max

* ∑
∈1"(#)

"(#) !* "(#)

"(#)

! (, = &|)"(#)

Similarly to how we did this the supervised regime, we compute the derivative, set it to
zero, and obtain closed form solutions:

Intuitively, the optimal mean and covariance are the emprical mean and convaraince of the
dataset when each element has a weight .

.&

Σ&

$&

= ! (, = &|)∑$
#=1 "(#) "(#)

$&

= ! (, = &|)(−)(−∑$
#=1 "(#) "(#) .& "(#) .&)⊤

$&

= ! (, = &|)∑
#=1

$
"(#)

 "(#) ! (, = &|)"(#)

Similarly, we can show that the class priors are

-&

$&

= $&

$

= ! (, = &|)∑
#=1

$
"(#)

EM in Gaussian Mixture Models
EM learns the parameters of a Gaussian mixture model over a dataset

 as follows.

For , repeat until convergence:

1. (E-Step) For each compute
2. (M-Step) Compute parameters using the above formulas

* (", ,)!*
 = { ∣ # = 1, 2, . . . , $}"(#)

0 = 0, 1, 2, …

∈ "(#) (,|)!*0 "(#)

, ,.& Σ& -&

Part 4: Generalization in Probabilistic Models
Let's now revisit the concepts of overfitting and underfitting in GMMs.

Review: Data Distribution
We will assume that the dataset is sampled from a probability distribution , which we will
call the data distribution. We will denote this as

The dataset consists of independent and identicaly
distributed (IID) samples from .

ℙ

" ∼ ℙ.

 = { ∣ # = 1, 2, . . . , $}"(#)

ℙ

Review: Gaussian Mixture Models
Gaussian mixtures are latent-variable probabilistic models that are useful for clustering.
They define a model

 is discrete and follows a categorical distribution
.

 is continuous; conditioned on , it follows a Normal distribution
.

The parameters are the for all .

(", ,) = ("|,) (,)!* !* !*

, ∈ {1, 2, … , '}
(, = &) =!* -&

" ∈ ℝ , = &
("|, = &) =  (,)!* .& Σ&

* , ,.& Σ& -& & = 1, 2, … , '

Review: Generalization
In machine learning, generalization is the property of predictive models to achieve good
performance on new, heldout data that is distinct from the training set.

How does generalization apply to probabilistic unsupervised models like GMMs?

An Unsupervised Learning Dataset
Consider the following dataset, consisting of a mixture of Gaussians.

In [49]: import numpy as np
from sklearn import datasets
from matplotlib import pyplot as plt
plt.rcParams['figure.figsize'] = [12, 4]

generate 150 random points
np.random.seed(0)
X_all, y_all = datasets.make_blobs(150, centers=4)

use the first 100 points as the main dataset
X, y = X_all[:100], y_all[:100]
plt.scatter(X[:,0], X[:,1])

Out[49]: <matplotlib.collections.PathCollection at 0x12b583780>

We know the true labels of these clusers, and we can visualize them.

In [50]: plt.scatter(X[:,0], X[:,1], c=y)

Out[50]: <matplotlib.collections.PathCollection at 0x115b872b0>

We will also keep 50 points as a holdout set.

In [51]: # use the last 50 points as a holdout set
X_holdout, y_holdout = X_all[100:], y_all[100:]
plt.scatter(X_holdout[:,0], X_holdout[:,1])

Out[51]: <matplotlib.collections.PathCollection at 0x12addcf98>

Underfitting in Unsupervised Learning
Underfitting happens when we are not able to fully learn the signal hidden in the data.

In the context of GMMs, this means not capturing all the clusters in the data.

Let's fit a GMM on our toy dataset.

In [52]: # fit a GMM
from sklearn import mixture
model = mixture.GaussianMixture(n_components=2)
model.fit(X)

Out[52]: GaussianMixture(n_components=2)

The model finds two distinct components in the data, but they fail to capture the true
structure.

We can also measure the value of our objective (the log-likelihood) on the training and
holdout sets.

In [53]: plt.scatter(X[:,0], X[:,1], c=y)
plt.scatter(model.means_[:,0], model.means_[:,1], marker='D', c='r', s=100)
print('Training Set Log-Likelihood (higher is better): %.2f' % model.score(X))
print('Holdout Set Log-Likelihood (higher is better): %.2f' % model.score(X_hold
out))

Training Set Log-Likelihood (higher is better): -4.09
Holdout Set Log-Likelihood (higher is better): -4.22

Consider now what happens if we further increase the number of clusters.

In [54]: Ks = [4, 10, 20]
f, axes = plt.subplots(1,3)
for k, ax in zip(Ks, axes):
 model = mixture.GaussianMixture(n_components=k)
 model.fit(X)
 ax.scatter(X[:,0], X[:,1], c=y)
 ax.scatter(model.means_[:,0], model.means_[:,1], marker='D', c='r', s=100)
 ax.set_title('Train LL: %.2f | Holdout LL: %.2f' % (model.score(X), model.sc
ore(X_holdout)))

Overfitting in Unsupervised Learning
Overfitting happens when we fit the noise, but not the signal.

In our example, this means fitting small, local noise clusters rather than the true global
clusters.

In [55]: model = mixture.GaussianMixture(n_components=50)
model.fit(X)

plt.subplot(121)
plt.title('Clusters on Training Set | Log-Lik: %.2f' % model.score(X))
plt.scatter(X[:,0], X[:,1], c=y)
plt.scatter(model.means_[:,0], model.means_[:,1], marker='D', c='r', s=100)

plt.subplot(122)
plt.title('Clusters on Holdout Set | Log-Lik: %.2f' % model.score(X_holdout))
plt.scatter(X_holdout[:,0], X_holdout[:,1], c=y_holdout)
plt.scatter(model.means_[:,0], model.means_[:,1], marker='D', c='r', s=100)

Out[55]: <matplotlib.collections.PathCollection at 0x12aeb95c0>

Measuring Generalization Using Log-Likelihood
Probabilistic unsupervised models optimize an objective that can be used to detect
overfitting and underfitting by comparing performance between training and holdout sets.

Below, we visualize the performance (measured via negative log-likelihood) on training
and holdout sets as increases.'

In [56]: Ks, training_objs, holdout_objs = range(1,25), [], []
for k in Ks:
 model = mixture.GaussianMixture(n_components=k)
 model.fit(X)
 training_objs.append(-model.score(X))
 holdout_objs.append(-model.score(X_holdout))

plt.plot(Ks, training_objs, '.-', markersize=15)
plt.plot(Ks, holdout_objs, '.-', markersize=15)
plt.xlabel("Number of clusters K")
plt.ylabel("Negative Log-Likelihood")
plt.title("Training and Holdout Negative Log-Likelihood (Lower is Better)")
plt.legend(['Training Negative Log-Likelihood', 'Holdout Negative Log-Likelihood
'])

Out[56]: <matplotlib.legend.Legend at 0x12c463320>

Warning: This process doesn't work as well as in supervised learning

For example, detecting overfitting with larger datasets will be paradoxically harder (try it!)

Summary
Generalization is important for supervised and unsupervised learning.
A probabilistic model can detect overfitting by comparing the likelihood of training
data vs. that of holdout data.
We can reduce overfitting by making the model less expressive.

